Exercise and Metabolism

Modelling the impact of changes in the extracellular environment on the cytosolic free NAD+/NADH ratio during cell culture

Cancer cells depend on glucose metabolism via glycolysis as a primary energy source, despite the presence of oxygen and fully functioning mitochondria, in order to promote growth, proliferation and longevity. Glycolysis relies upon NAD+ to accept electrons in the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction, linking the redox state of the cytosolic NAD+ pool to glycolytic rate. The free cytosolic NAD+/NADH ratio is involved in over 700 oxidoreductive enzymatic reactions and as such, the NAD+/NADH ratio is regarded as a metabolic readout of overall cellular redox state.

Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure

Alterations in energetic state of the myocardium are associated with decompensated heart failure in humans and in animal models. However, the functional consequences of the observed changes in energetic state on mechanical function are not known. The primary aim of the study was to quantify mechanical/energetic coupling in the heart and to determine if energetic dysfunction can contribute to mechanical failure.

Understanding the physiology of the ageing individual: computational modeling of changes in metabolism and endurance

Ageing and lifespan are strongly affected by metabolism. The maximal possible uptake of oxygen is not only a good predictor of performance in endurance sports, but also of life expectancy. Figuratively speaking, healthy ageing is a competitive sport. Although the root cause of ageing is damage to macromolecules, it is the balance with repair processes that is decisive. Reduced or intermittent nutrition, hormones and intracellular signalling pathways that regulate metabolism have strong effects on ageing.

Open-Loop Control of Oxidative Phosphorylation in Skeletal and Cardiac Muscle Mitochondria by Ca(2)

In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway.

Simple accurate mathematical models of blood HbO2 and HbCO2 dissociation curves at varied physiological conditions: evaluation and comparison with other models

PURPOSE:
Equations for blood oxyhemoglobin (HbO2) and carbaminohemoglobin (HbCO2) dissociation curves that incorporate nonlinear biochemical interactions of oxygen and carbon dioxide with hemoglobin (Hb), covering a wide range of physiological conditions, are crucial for a number of practical applications. These include the development of physiologically-based computational models of alveolar-blood and blood-tissue O2-CO2 transport, exchange, and metabolism, and the analysis of clinical and in vitro data.
METHODS AND RESULTS:

Bridging scales through multiscale modeling: A case study on Protein Kinase A

The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked.

The pathway for oxygen. Tutorial modeling on oxygen transport from air to mitochondrion: The Pathway for Oxygen

The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions.

Energy-based analysis of biochemical cycles using bond graphs

Thermodynamic aspects of chemical reactions have a long history in the Physical Chemistry literature. In particular, biochemical cycles - the building-blocks of biochemical systems - require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems where energy generation, storage and transmission are fundamental.

Pages

Subscribe to RSS - Exercise and Metabolism